Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Elife ; 122023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697804

RESUMO

Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding: No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).


Salmonella Typhi (Typhi) is a type of bacteria that causes typhoid fever. More than 110,000 people die from this disease each year, predominantly in areas of sub-Saharan Africa and South Asia with limited access to safe water and sanitation. Clinicians use antibiotics to treat typhoid fever, but scientists worry that the spread of antimicrobial-resistant Typhi could render the drugs ineffective, leading to increased typhoid fever mortality. The World Health Organization has prequalified two vaccines that are highly effective in preventing typhoid fever and may also help limit the emergence and spread of resistant Typhi. In low resource settings, public health officials must make difficult trade-off decisions about which new vaccines to introduce into already crowded immunization schedules. Understanding the local burden of antimicrobial-resistant Typhi and how it is spreading could help inform their actions. The Global Typhoid Genomics Consortium analyzed 13,000 Typhi genomes from 110 countries to provide a global overview of genetic diversity and antimicrobial-resistant patterns. The analysis showed great genetic diversity of the different strains between countries and regions. For example, the H58 Typhi variant, which is often drug-resistant, has spread rapidly through Asia and Eastern and Southern Africa, but is less common in other regions. However, distinct strains of other drug-resistant Typhi have emerged in other parts of the world. Resistance to the antibiotic ciprofloxacin was widespread and accounted for over 85% of cases in South Africa. Around 70% of Typhi from Pakistan were extensively drug-resistant in 2020, but these hard-to-treat variants have not yet become established elsewhere. Variants that are resistant to both ciprofloxacin and ceftriaxone have been identified, and azithromycin resistance has also appeared in several different variants across South Asia. The Consortium's analyses provide valuable insights into the global distribution and transmission patterns of drug-resistant Typhi. Limited genetic data were available fromseveral regions, but data from travel-associated cases helped fill some regional gaps. These findings may help serve as a starting point for collective sharing and analyses of genetic data to inform local public health action. Funders need to provide ongoing supportto help fill global surveillance data gaps.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Febre Tifoide/epidemiologia , Antibacterianos/farmacologia , Viagem , Farmacorresistência Bacteriana/genética , Ciprofloxacina
2.
Indian J Med Microbiol ; 44: 100360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356834

RESUMO

PURPOSE: Brucellosis is a bacterial zoonotic disease caused by genus Brucella. The disease is often transmitted to humans by direct or indirect contact with infected livestock or from laboratory exposure. In this study two clinical isolates of Brucella melitensis were subjected to whole genome sequencing (WGS) using Ion Torrent PGM and Oxford Nanopore MinIon platform. METHODS: The two hybrid complete genomes were subjected to core gene SNP analysis to identify the relative evolutionary position. To distinguish between the various lineages of B. melitensis, Pangenome analysis was carried out. RESULTS: Phylogenetic analysis revealed that both the study isolates (ST8) clustered along the other Asian isolates that formed genotype II. Genome wide analyses of 326 B melitensis isolates suggests 2171 gene clusters were shared across all the genomes while 3552 gene clusters were considered as accessory genes. CONCLUSION: Here we attempted to provide the gain and loss of six unique genes that defined the phylogenetic lineages and complex evolutionary process. As the severity and prevalence of human brucellosis is increasing a better understanding of Brucella genomics and transmission dynamics is needed.


Assuntos
Brucella melitensis , Brucelose , Humanos , Brucella melitensis/genética , Filogenia , Estudo de Associação Genômica Ampla , Brucelose/epidemiologia , Genômica , Genótipo
3.
Indian J Med Microbiol ; 44: 100359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356840

RESUMO

Non-typhoidal Salmonella (NTS) is the major cause of foodborne infections globally, with considerable morbidity and mortality. The accurate identification of Salmonella serovars is important in disease management and public health surveillance. However, traditional serotyping methods are laborious, time-consuming and may produce ambiguous results. In this study, we evaluated traditional serotyping and seven gene-based multilocus sequence typing (MLST) methods to determine the serogroups of Salmonella strains. This study analysis suggests that MLST based serotyping is accurate in serogroup identification and discrimination of Salmonella serovars compared to the traditional serotyping method and can be implemented in routine clinical practice.


Assuntos
Infecções por Salmonella , Salmonella enterica , Humanos , Tipagem de Sequências Multilocus/métodos , Salmonella/genética , Sorotipagem/métodos , Infecções por Salmonella/epidemiologia , Sorogrupo , Salmonella enterica/genética
4.
PLoS Pathog ; 19(4): e1010650, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115804

RESUMO

Paratyphoid fever caused by S. Paratyphi A is endemic in parts of South Asia and Southeast Asia. The proportion of enteric fever cases caused by S. Paratyphi A has substantially increased, yet only limited data is available on the population structure and genetic diversity of this serovar. We examined the phylogenetic distribution and evolutionary trajectory of S. Paratyphi A isolates collected as part of the Indian enteric fever surveillance study "Surveillance of Enteric Fever in India (SEFI)." In the study period (2017-2020), S. Paratyphi A comprised 17.6% (441/2503) of total enteric fever cases in India, with the isolates highly susceptible to all the major antibiotics used for treatment except fluoroquinolones. Phylogenetic analysis clustered the global S. Paratyphi A collection into seven lineages (A-G), and the present study isolates were distributed in lineages A, C and F. Our analysis highlights that the genome degradation events and gene acquisitions or losses are key molecular events in the evolution of new S. Paratyphi A lineages/sub-lineages. A total of 10 hypothetically disrupted coding sequences (HDCS) or pseudogenes-forming mutations possibly associated with the emergence of lineages were identified. The pan-genome analysis identified the insertion of P2/PSP3 phage and acquisition of IncX1 plasmid during the selection in 2.3.2/2.3.3 and 1.2.2 genotypes, respectively. We have identified six characteristic missense mutations associated with lipopolysaccharide (LPS) biosynthesis genes of S. Paratyphi A, however, these mutations confer only a low structural impact and possibly have minimal impact on vaccine effectiveness. Since S. Paratyphi A is human-restricted, high levels of genetic drift are not expected unless these bacteria transmit to naive hosts. However, public-health investigation and monitoring by means of genomic surveillance would be constantly needed to avoid S. Paratyphi A serovar becoming a public health threat similar to the S. Typhi of today.


Assuntos
Febre Tifoide , Humanos , Febre Tifoide/microbiologia , Salmonella typhi/genética , Filogenia , Salmonella paratyphi A/genética , Antibacterianos , Genômica
5.
Indian J Med Microbiol ; 40(4): 536-540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35987666

RESUMO

PURPOSE: Invasive non-typhoidal Salmonella (iNTS) disease is an important cause of morbidity and mortality in African countries. However, the incidence in Indian subcontinent remains poorly documented. This study has assessed the incidence of iNTS in India with a perspective on its AMR profiles and serovar distribution for a period of 21 years from 2000 to 2020 from a tertiary care centre in South India. METHODS: A total of 461 iNTS isolates were subjected to serotyping and antimicrobial susceptibility testing (AST). A subset of isolates was genotyped by multi locus sequence typing (MLST) and results were compared to serotyping to predict the accuracy. RESULTS: Overall, 461 iNTS isolates were characterised mostly comprising of S. Typhimurium (49.2%) and S. Enteritidis (28.8%). Proportion of isolates resistant to first line antibiotics such as ampicillin, chloramphenicol and trimethoprim/sulphamethoxazole were 6.7%, 1.7% and 3.6% respectively. Isolates resistant to third generation cephalosporin are at a gradual rise while decreased susceptibility to quinolones was most common. The incidence of iNTS infection was maximum in the age group of >15 years. MLST analysis showed discrepancies in assigning the serovars by serotyping as three S. Saintpaul were identified as S. Typhimurium. CONCLUSION: The clinical epidemiology, serovar distribution and antimicrobial susceptibility patterns of invasive Salmonella isolates from India suggest that there is only a small burden of iNTS disease. However the gradual emergence of AMR in iNTS isolates indicates serious risk for public health warranting the importance enhanced molecular surveillance.


Assuntos
Quinolonas , Infecções por Salmonella , Febre Tifoide , Adolescente , Ampicilina , Antibacterianos/farmacologia , Cefalosporinas , Cloranfenicol , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Salmonella/genética , Infecções por Salmonella/epidemiologia , Combinação Trimetoprima e Sulfametoxazol
6.
Front Microbiol ; 13: 869653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783393

RESUMO

With the excessive genome plasticity, Acinetobacter baumannii can acquire and disseminate antimicrobial resistance (AMR) genes often associated with mobile genetic elements (MGEs). Analyzing the genetic environment of resistance genes often provides valuable information on the origin, emergence, evolution, and spread of resistance. Thus, we characterized the genomic features of some clinical isolates of carbapenem-resistant A. baumannii (CRAb) to understand the role of diverse MGEs and their genetic context responsible for disseminating carbapenem resistance genes. For this, 17 clinical isolates of A. baumannii obtained from multiple hospitals in India between 2018 and 2019 were analyzed. AMR determinants, the genetic context of resistance genes, and molecular epidemiology were studied using whole-genome sequencing. This study observed an increased prevalence of bla OXA-23 followed by dual carbapenemases, bla OXA-23 , and bla NDM . This study identified three novel Oxford MLST sequence types. The majority of the isolates belonged to the dominant clone, IC2, followed by less prevalent clones such as IC7 and IC8. This study identified variations of AbaR4 and AbGRI belonging to the IC2 lineage. To the best of our knowledge, this is the first study that provides comprehensive profiling of resistance islands, their related MGEs, acquired AMR genes, and the distribution of clonal lineages of CRAb from India.

7.
Front Cell Infect Microbiol ; 12: 875116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573787

RESUMO

Background: Hypervirulent variants of Klebsiella pneumoniae (HvKp) were typically associated with a broadly antimicrobial susceptible clone of sequence type (ST) 23 at the time of its emergence. Concerningly, HvKp is now also emerging within multidrug-resistant (MDR) clones, including ST11, ST15, and ST147. MDR-HvKp either carry both the virulence and resistance plasmids or carry a large hybrid plasmid coding for both virulence and resistance determinants. Here, we aimed to genetically characterize a collection of MDR-HvKp ST2096 isolates haboring hybrid plasmids carrying both antimicrobial resistance (AMR) and virulence genes. Methods: Nine K. pneumoniae ST2096 isolated over 1 year from the blood sample of hospitalized patients in southern India that were MDR and suspected to be HvKp were selected. All nine isolates were subjected to short-read whole-genome sequencing; a subset (n = 4) was additionally subjected to long-read sequencing to obtain complete genomes for characterization. Mucoviscosity assay was also performed for phenotypic assessment. Results: Among the nine isolates, seven were carbapenem-resistant, two of which carried blaNDM-5 on an IncFII plasmid and five carried blaOXA-232 on a ColKP3 plasmid. The organisms were confirmed as HvKp, with characteristic virulence genes (rmpA2, iutA, and iucABCD) carried on a large (~320 kbp) IncFIB-IncHI1B co-integrate. This hybrid plasmid also carried the aadA2, armA, blaOXA-1, msrE, mphE, sul1, and dfrA14 AMR genes in addition to the heavy-metal resistance genes. The hybrid plasmid showed about 60% similarity to the IncHI1B virulence plasmid of K. pneumoniae SGH10 and ~70% sequence identity with the first identified IncHI1B pNDM-MAR plasmid. Notably, the hybrid plasmid carried its type IV-A3 CRISPR-Cas system which harbored spacer regions against traL of IncF plasmids, thereby preventing their acquisition. Conclusion: The convergence of virulence and AMR is clinically concerning in K. pneumoniae. Our data highlight the role of hybrid plasmids carrying both AMR and virulence genes in K. pneumoniae ST2096, suggesting that MDR-HvKp is not confined to selected clones; we highlight the continued emergence of such genotypes across the species. The convergence is occurring globally amidst several clones and is of great concern to public health.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Humanos , Plasmídeos/genética , Virulência/genética , beta-Lactamases/genética
8.
Data Brief ; 41: 107875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146093

RESUMO

We report here the draft genome sequence of two rare Salmonella serotypes, isolated from human faecal samples in India. The isolates were identified as Salmonella enterica subsp. enterica serovar Ceyco and serovar Hillegersberg by Wole genome sequencing (WGS) based serotype prediction. The genomic similarity of study isolates was identified by clustering with the global collection of Salmonella sp. available in EnteroBase and SISTR based on their cgMLST profile. Phylogenetic analysis showed the study isolates were closer to S. Detmold and other unknown serovars from serogroup D2 . The information generated from genome sequencing of two rare S. enterica serovar will improve the overall understanding of the epidemiology of this clinically relevant pathogen.

9.
Indian J Med Microbiol ; 39(4): 417-422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454775

RESUMO

BACKGROUND: Following a relatively mild first wave of coronavirus disease 2019 (COVID-19) in India, a deadly second wave of the pandemic overwhelmed the healthcare system due to the emergence of fast-transmitting SARS-CoV-2 genetic variants. The emergence and spread of the B.1.617.2/Delta variant considered to be driving the devastating second wave of COVID-19 in India. Currently, the Delta variant has rapidly overtaken the previously circulating variants to become the dominant strain. Critical mutations in the spike/RBD region of these variants have raised serious concerns about the virus's increased transmissibility and decreased vaccine effectiveness. As a result, significant scientific and public concern has been expressed about the impact of virus variants on COVID-19 vaccines. OBJECTIVES: The purpose of this article is to provide an additional explanation in the context of the evolutionary trajectory of SARS-CoV-2 variants in India, the vaccine-induced immune response to the variants of concern (VOC), and various vaccine deployment strategies to rapidly increase population immunity. CONTENT: Phylogenetic analysis of SARS-CoV-2 isolates circulating in India suggests the emergence and spread of B.1.617 variant. The immunogenicity of currently approved vaccines indicates that the majority of vaccines elicit an antibody response and some level of protection. According to current data, vaccines in the pre-fusion configuration (2p substitution) have an advantage in terms of nAb titer, but the duration of vaccine-induced immunity, as well as the role of T cells and memory B cells in protection, remain unknown. Since vaccine efficacy on virus variants is one of the major factors to be considered for achieving herd immunity, existing vaccines need to be improved or effective next-generation vaccines should be developed to cover the new variants of the virus.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19/imunologia , COVID-19 , SARS-CoV-2 , COVID-19/imunologia , COVID-19/prevenção & controle , Evolução Molecular , Humanos , Índia , Filogenia , SARS-CoV-2/genética , Vacinação
10.
mBio ; 12(4): e0118821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281387

RESUMO

The currently ongoing COVID-19 pandemic caused by SARS-CoV-2 has accounted for millions of infections and deaths across the globe. Genome sequences of SARS-CoV-2 are being published daily in public databases and the availability of these genome data sets has allowed unprecedented access to the mutational patterns of SARS-CoV-2 evolution. We made use of the same genomic information for conducting phylogenetic analysis and identifying lineage-specific mutations. The catalogued lineage-defining mutations were analyzed for their stabilizing or destabilizing impact on viral proteins. We recorded persistence of D614G, S477N, A222V, and V1176F variants and a global expansion of the PANGOLIN variant B.1. In addition, a retention of Q57H (B.1.X), R203K/G204R (B.1.1.X), T85I (B.1.2-B.1.3), G15S+T428I (C.X), and I120F (D.X) variations was observed. Overall, we recorded a striking balance between stabilizing and destabilizing mutations, therefore leading to well-maintained protein structures. With selection pressures in the form of newly developed vaccines and therapeutics to mount in the coming months, the task of mapping viral mutations and recording their impact on key viral proteins should be crucial to preemptively catch any escape mechanism for which SARS-CoV-2 may evolve. IMPORTANCE Since its initial isolation in Wuhan, China, large numbers of SARS-CoV-2 genome sequences have been shared in publicly accessible repositories, thus enabling scientists to do detailed evolutionary analysis. We investigated the evolutionarily associated mutational diversity overlaid on the major phylogenetic lineages circulating globally, using 513 representative genomes. We detailed the phylogenetic persistence of key variants facilitating global expansion of the PANGOLIN variant B.1, including the recent, fast-expanding, B.1.1.7 lineage. The stabilizing or destabilizing impact of the catalogued lineage-defining mutations on viral proteins indicates their possible involvement in balancing the protein function and structure. A clear understanding of this mutational profile is of high clinical significance to catch any vaccine escape mechanism, as the same proteins make crucial components of vaccines that have recently been approved or are in development. In this vein, our study provides an imperative framework and baseline data upon which further analysis could be built as newer variants of SARS-CoV-2 continue to appear.


Assuntos
COVID-19/epidemiologia , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos/genética , COVID-19/transmissão , Evolução Molecular , Humanos , Mutação/genética , Filogenia , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma
11.
Access Microbiol ; 3(2): 000189, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34151144

RESUMO

Azithromycin is increasingly being used for the treatment of shigellosis despite a lack of interpretative guidelines and with limited clinical evidence. The present study determined azithromycin susceptibility and correlated this with macrolide-resistance genes in Shigella spp. isolated from stool specimens in Vellore, India. The susceptibility of 332 Shigella isolates to azithromycin was determined using the disc diffusion method. Of these, 31 isolates were found to be azithromycin resistant. The azithromycin minimum inhibitory concentration (MIC) was determined using the broth microdilution method. In addition, isolates were screened for mphA and ermB genes using conventional PCR. Furthermore, an isolate that was positive for resistance genes was subjected to complete genome analysis, and was analysed for mobile genetic elements. The azithromycin MIC for the 31 resistant Shigella isolates ranged between 2 and 16 mg l-1. PCR results showed that a single isolate of Shigella sonnei carried a mphA gene. Complete genome analysis revealed integration of an IncFII plasmid into the chromosome of S. sonnei , which was also found to carry the following resistance genes: sul1, bla DHA1, qnrB4, mphA, tetR. Mutations in the quinolone-resistance-determining region (QRDR) were also observed. Additionally, prophages, insertion sequences and integrons were identified. The novel finding of IncFII plasmid integration into the chromosome of S. sonnei highlights the potential risk of Shigella spp. becoming resistance to azithromycin in the future. These suggests that it is imperative to monitor Shigella susceptibility and to study the resistance mechanism of Shigella to azithromycin considering the limited treatment choices for shigellosis.

12.
Genomics ; 113(4): 2171-2176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965548

RESUMO

BACKGROUND: Recent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination. METHODS: Five ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae. RESULTS: Comparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1). CONCLUSION: Considering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally.


Assuntos
Salmonella typhi , Febre Tifoide , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Enterobacteriaceae/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Salmonella typhi/genética
13.
Mol Biol Rep ; 48(4): 3265-3276, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33876375

RESUMO

The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been reported worldwide. Hence, it is important to identify the prevalent clones, sequence types and cps variants of serotype 19F/19A in India, where PCV13 has been recently introduced. Multi-locus sequence typing (MLST) was performed for all (n = 21) invasive S. pneumoniae isolates of serotype 19A (n = 5) and 19F (n = 16) collected between the years 2012 and 2018 from children less than 5 years. The genome characterization by whole genome sequencing for the Sequence types (STs) 320 and 271(n = 7) were performed and compared with another six Indian WGSs of similar STs available from the GPS platform. The predominant STs in the serotype 19F/19A study isolates were of CC320: ST 320, 236 and 271, associated with PMEN clone Taiwan19F-14. The WGSs of CC320 study isolates showed high genomic similarity to the Taiwan19F-14 clone, and the penicillin binding protein (PBP) amino acid sequence similarity was 100% for PBP1A, 93% for PBP 2B and 2X. Whilst PBP comparison with other global MDR ST320 strains revealed that the ST320 clones in India are of low-level penicillin resistance. The presence of a few ST320/19A/19F invasive isolates with high similarity to the Taiwan clone suggests slow and gradual expansion of Taiwan19F-14 associated CC320 clones in India. Since serotype 19F/19A is covered by PCV13 vaccine, the expansion of 19F/19A cones with non-PCV13 vaccine serotype in India should be monitored.


Assuntos
Resistência às Penicilinas , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/uso terapêutico , Sorogrupo , Streptococcus pneumoniae/genética , Pré-Escolar , Genômica , Humanos , Índia , Tipagem de Sequências Multilocus , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/fisiologia , Sequenciamento Completo do Genoma
14.
Microb Drug Resist ; 27(8): 1096-1104, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33720791

RESUMO

Background: Klebsiella pneumoniae (Kp), a common multidrug-resistant pathogen, causes a wide spectrum of nosocomial infections with high rates of morbidity and mortality. The emergence of pan drug-resistant international high-risk clones such as ST258, ST14, ST15, ST147, and ST101 is a global concern. This study was performed to investigate the carbapenemases, the plasmid profile, and the clonal relationship among Indian K. pneumoniae. Materials and Methods: A total of 290 K. pneumoniae isolates from seven centers in India were characterized to determine sequence types (STs) and carbapenemases. A subset of isolates was subjected to whole genome sequencing and hybrid genome assembly to obtain the complete genome. Plasmids carrying carbapenemases were characterized to determine the dissemination of carbapenem-resistant (CR) K. pneumoniae. Results: From this study, 75 different STs were observed with ST231 being predominant. About 79% of the analyzed isolates were CR with 59% (n = 136) producing OXA48-like carbapenemases. While ST231 was the predominant clone among the OXA48-like producers; NDM producers and NDM+OXA48-like producers were mostly associated with ST14. Interestingly, 61% (n = 138) of the total CR K. pneumoniae were colistin resistant, belonging to 22 different STs. Plasmid profiling shows that blaOXA48-like was exclusively carried by ColKP3, whereas blaNDM was associated with IncFII-like plasmids. Conclusion: The highly mosaic genome of K. pneumoniae coupled with the diverse ecological niches in India makes it a hotspot for antimicrobial resistance, leading to increased morbidity and mortality. Extensive molecular surveillance of the clonal spread of K. pneumoniae could help in understanding AMR dynamics and thus rework therapeutic management.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Klebsiella pneumoniae/genética , Colistina/farmacologia , Genes Bacterianos , Humanos , Índia , Testes de Sensibilidade Microbiana , Plasmídeos , Sequenciamento Completo do Genoma
15.
Front Cell Infect Microbiol ; 10: 575289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330125

RESUMO

Background: In recent years, the emergence of multidrug resistant hypervirulent K. pneumoniae (MDR hvKp) isolates poses severe therapeutic challenge to global public health. The present study used the complete genome sequence of two MDR hvKp isolates belonging to ST23 to characterize the phylogenetic background and plasmid diversity. Methods: Two hvKp isolates from patients with bacteremia were sequenced using Ion Torrent PGM and Oxford Nanopore MinION platforms and assembled by hybrid genome assembly approach. Comparative genomics approaches were used to investigate the population structure, evolution, virulence, and antimicrobial resistance of MDR hvKp strains. Results: The study isolates exhibited typical features of hvKp phenotypes associated with ST23. The convergence of multidrug resistance and hypervirulence were attributed by the presence of multiple plasmids including a 216 kb virulence plasmid and MDR plasmids belonging to IncA/C2, IncFIB, IncX3, and ColKP3 groups. The insertion of catA1 gene into virulence plasmid was observed along with genetic factors such as aerobactin, salmochelin, and rmpA2 that confer hvKp's hypervirulent phenotype. The core genome single nucleotide polymorphism (SNP) phylogenetic analyses of the isolates showed the evolution of ST23 hvKp was predominantly driven by ICEKp acquisitions. Conclusion: To the best of our knowledge, this is the first report of MDR hvKp isolates of ST23 with insertion of catA1 gene into the virulence plasmid which presents the possibility of hotspot integration sites on the plasmids to aid acquisition of AMR genes. ST23 is no longer confined to susceptible strains of hvKp. Our findings emphasize the need for more studies on recombinant events, plasmid transmission dynamics and evolutionary process involving hvKp.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Proteínas de Bactérias/genética , Humanos , Klebsiella pneumoniae/genética , Filogenia , Plasmídeos/genética
16.
Gut Pathog ; 12: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110449

RESUMO

BACKGROUND: The steady increase in the proportion of Non-typhoidal Salmonella (NTS) infections in humans represents a major health problem worldwide. The current study investigated the serovar distribution and antimicrobial susceptibility trends of NTS isolated from faecal samples during the period 2000-2018. METHODS: Faecal specimens of patients were cultured according to standard lab protocol. The isolates were serotyped and antimicrobial susceptibility testing (AST) were performed according to CLSI guidelines. RESULTS: A total of 1436 NTS isolates were obtained from faeces samples mostly comprising of S. Typhimurium (27.3%), S. Weltevreden (13%), S. Bareilly (11%), S. Newport (4.2%), S. Cholerasuis (4%), S. Infantis (3.4%), and S. Enteritidis (2.4%). Resistance to nalidixic acid (26%) was most common among the tested NTS, followed by ampicillin (18.5%), cotrimoxazole (13.5%), ciprofloxacin (12%), ceftriaxone (6.3%) and chloramphenicol (3.6%). Multidrug resistance was observed in 5% of NTS isolates with the highest rate (10.52%) in 2014. The incidence of NTS infection was maximum in children < 5 years of age with an average 19.3% of the total affected patients during the time period. CONCLUSIONS: Based on this study, the faecal NTS isolates have high resistance rates against first line antimicrobial agents except chloramphenicol. The gradual but consistent increase in resistance to fluoroquinolones, third generation cephalosporins and macrolide may restrict future treatment options. Hence periodic monitoring of NTS infections, serotype distribution and antimicrobial resistance trend is recommended.

17.
Mol Biol Rep ; 47(10): 7797-7803, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33001311

RESUMO

Traditional serotyping based on the phenotypic variation of O- and H-antigen remains as the gold-standard for the identification and classification of Salmonella isolates for last 70 years. Although this classification is a globally recognized nomenclature, huge diversity of Salmonella serotypes have made the serovar identification to be very complex. Seven gene multilocus sequence typing (MLST) on the other hand can provide serovar prediction as well as the evolutionary origin between the serovars. In this study non typhoidal Salmonella (NTS) strains (n = 45) isolated from clinical samples (blood, faeces and pus) were identified by traditional phenotypic serotyping and biochemical testing. All the tested Salmonella isolates were designated as serovar Typhimurium based on phenotyping. However, by MLST 60% (27/45) of the isolates were S. Typhimurium, 35.5% (16/45) were S. Agona (ST13), 2.2% (1/45) were S. Kentucky (ST198) and 2.2% (1/45) were S. Saintpaul (ST27). MLST analysis assigned S. Typhimurium isolates as ST36 (18/127), ST19 (7/27) and ST313 (2/27). Mismatches in serovar designation between MLST database and phenotypic serotyping can be due to the misinterpretation of phenotypic serotyping as the antigenic structures of S. Typhimurium, S. Agona differs by a surface antigen. MLST based phylogeny of study isolates showed clustering according to sequence types. Concordance between MLST based sequence type and phenotypic serotype is important to provide insights into genetic population structure of Salmonella.


Assuntos
Técnicas de Genotipagem , Tipagem de Sequências Multilocus , Filogenia , Salmonella typhimurium/genética , Sorogrupo
18.
Indian J Med Microbiol ; 38(2): 210-212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32883935

RESUMO

Recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent containment procedures have impacted the world as never seen before. Therefore, there is considerable curiosity about the genome evolution related to the origin, transmission and vaccine impact of this virus. We have analysed genome sequences of SARS-CoV-2 isolated from Indian patients to gain an in-depth understanding of genomic evolution and transmission in India. Phylogenetic analysis and mutation profiling revealed major lineages being evolved by characteristic mutations. As the mutation frequency in spike protein is comparatively lesser, the candidate vaccines expected to have wide coverage worldwide including India.


Assuntos
Antígenos Virais/genética , Betacoronavirus/genética , Infecções por Coronavirus/prevenção & controle , Genoma Viral , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Virais/genética , Animais , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Betacoronavirus/classificação , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Vacinas contra COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Reservatórios de Doenças/virologia , Eutérios/virologia , Evolução Molecular , Humanos , Índia/epidemiologia , Mutação , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
19.
J Glob Antimicrob Resist ; 21: 200-202, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330579

RESUMO

OBJECTIVES: Elizabethkingia spp. are Gram-negative, glucose-non-fermenting bacilli that are ubiquitous in natural environments such as soil, plant and water sources. Besides environmental sources, the bacterium can be found in hospital environments, particularly medical equipment and reagents. Here we report the draft genome sequence of an Elizabethkingia anophelis isolate from a blood culture. METHODS: Genomic DNA of E. anophelis strain BP8467 was sequenced on an Ion Torrent PGM platform and the reads were assembled de novo using SPAdes v.5.0.0. The draft genome was annotated using the Prokaryotic Genome Annotation Pipeline (PGAP) v.4.9. Genetic determinants of antimicrobial resistance as well as virulence factors were identified using computational tools. RESULTS: The assembled draft genome is 3859105bp in length with a G+C content of 35.62% distributed in 30 contigs. Presence of the blaBlaB and blaGOB-4 genes associated with resistance to carbapenems was identified. In addition, genes conferring resistance to other ß-lactams (blaCME-1), aminoglycosides [ant(6)-I] and chloramphenicol (catB) were also detected. Antimicrobial susceptibility testing showed that the isolate was susceptible to levofloxacin, trimethoprim/sulfamethoxazole, tetracycline and rifampicin. CONCLUSION: The presence of a multidrug-resistant isolate harbouring diverse antimicrobial resistance genes along with numerous virulence factors suggests the risk associated with Elizabethkingia spp. infections. This genome analysis provides insights into the antimicrobial resistance and pathogenicity mechanisms of multidrug-resistant E. anophelis that can help in the management of Elizabethkingia spp. infections in the future.


Assuntos
Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Flavobacteriaceae , Genoma Bacteriano , Índia
20.
Biotechnol Rep (Amst) ; 25: e00422, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31993344

RESUMO

Lipase was immobilized onto bacterial magnetosomes using glutaraldehyde cross-linking and confirmed by Fourier transform infrared spectrometry (FT-IR) and Scanning electron microscopy (SEM). Enzyme activity of immobilised lipase as well as free lipase was estimated by the release of p-nitro phenol due to the hydrolysis of p-nitro phenyl acetate (pNPA). The immobilisation yield of lipase onto magnetosome was found to be 88 %. The optimal pH (7) and temperature (40 °C) for activity was standardised and found to be similar to free lipase. The stored immobilized lipase maintained higher activity even after 30 days at a temperature of 4 °C whereas compared to free lipase. Immobilized lipase found to have removed vegetable oil stain and showed higher cleaning efficiency when compared to free lipase. The results suggest that bacterial magnetosome displays great potential as a support material for the immobilization of industrial enzymes such as lipase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA